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ABSTRACT 
This paper presents a new framework to measure farm-level heterogeneity, and productivity 
change, and to study the rate and direction of technical change within an agricultural sector. 
Building on the seminal works of Hildenbrand (1981) and Dosi et al. (2016), we show how, while 
relaxing most of the standard assumptions from production theory, discrete geometry is an 
effective tool for productivity analysis and technical change in agricultural economics. We apply 
the framework to a rich panel data from maize farmers in Tanzania to investigate the dynamics 
of technical heterogeneity and agricultural productivity growth. 
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 Introduction 
Improving agricultural productivity is fundamental to achieving sustainable development, reducing 
poverty, and enhancing the living standards of most people in sub-Saharan Africa (SSA). According 
to a report from the African Development Bank (AfDB, 2013), agriculture  accounts for at least 40 
percent of exports, 30 percent of gross domestic product (GDP), up to 30 percent of foreign exchange 
earnings, and ensures employment for 70 to 90 percent of the labor force in sub-Saharan Africa (SSA). 
Despite moderate increases, SSA’s agricultural       productivity is still growing at approximately half the 
average rate of developing countries (Pratt, 2015). In recent years, many studies have demonstrated 
the heterogeneity of the smallholder production environment and technology (see Vanlauwe et al. 
2019 anc citations therein). Using rich panel data from farms in Tanzania and Uganda, Gollin and Udry 
(2021) find that measurement error and unobserved heterogeneity in the characteristics of farm plots 
account together for a large proportion of the dispersion in measured productivity. This finding is 
vindicated by Maue et al. (2020), who establish that about half of this dispersion can be accounted for 
by measurement error in the output. After correcting for measurement error, Maue et al. (2020) find 
that dispersion in productivity among farms  is significant and persistent over time. The results in both 
papers question the common implications of observed dispersion, such as the importance of 
misallocation of factors of production. For example, Gollin and Udry (2021) suggest that the 
potential for efficiency gains through the reallocation of land among farms and farmers may be 
relatively modest. 
 
Yet agricultural research for development (R4D) that aims to identify and assess alternatives for 
increasing productivity has not consistently tailored its approaches to such heterogeneous 
conditions. As agricultural policies have focused on very general recommendations, there is 
increasing recognition that the heterogeneity of agroecologies and farms and farmers needs 
locally adapted solutions and tailored approaches (Giller et al., 2011). In fact, Smallholder 
farming environments in sub-Saharan Africa are characterized by (i) variable soil fertility 
conditions within short distances, (ii) variable access to resources for farming families within the 
same communities, (iii) variable enabling conditions for an increase in agricultural production 
per unit of inputs, (iv) including access to agro-inputs, markets and extension services. Moreover, 
farmers have (v) varying access to production resources including land, labor, and cash, (vi) 
different production objectives including food     for subsistence and products for the market, (vii) 
varying capacities to absorb risk inherent  to alternative management practices, with poorer 
households being more risk-averse, and (viii) diverse attitudes to farming and the role farming 
plays within their overall livelihood (Vanlauwe et al., 2019). Therefore, we need an analytical 
framework that allows each farm  to be different in terms of its production technology. In order 
to formulate more tailored agricultural policies, this paper aims to answer the following questions: 
(i) how to measure an agricultural sector heterogeneity when farms are different over several 
dimensions? (ii) how to measure productivity and technical changes over time while accounting 
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for farms’ heterogeneity? (iii) What factors are associated with the measured agricultural 
productivity? 

To answer these questions we rely on a geometric approach to production analysis based on the 
seminal works of Hildenbrand (1981) and Dosi et al. (2016). Hildenbrand (1981) proposes an 
agnostic and data-oriented approach in which one can represent a production unit (within an 
industry) in the input-output space. The production possibility set of the industry is then 
represented geometrically by the space formed by the finite sum of all the line segments, linking 
the origin and the points representing each production unit within the industry (a Zonotope). 
Exploiting the properties of Zonotopes, Dosi et al. (2016) show how to obtain rigorous measures 
of intra-industry heterogeneity and productivity without imposing functional form or input 
substitution assumptions on the data like in standard production function analysis. 

Our proposed approach is implemented using detailed farm and plot survey data from maize 
production in Tanzania. Agriculture contributes almost 30% to the country’s GDP and is the 
predominant source of income for approximately 75% of the population (Van Dijk            et al., 2017). 
Maize is the main staple food crop with 5.9 million tons produced in 2018 (FAO), and it is 
consumed and cultivated all over the country under varying agro-climatic and socio-economic 
conditions. Therefore, analyzing technological heterogeneity and productivity of households’ 
maize production in Tanzania is policy-relevant in different areas including poverty reduction, 
food security, and the spatial distribution of agricultural crops. It is also methodologically 
interesting for us as it is typically expected that farmers growing  maize are homogeneous in terms 
of production techniques.  

We make two main contributions in this paper. The first contribution is methodological as we 
introduce in the agricultural economics literature, a new approach to investigate agricultural 
production when micro-data is available. Assessing intra-industry heterogeneity and within-
industry productivity, as differentiated from measuring stated inefficiencies vis-a-vis some frontier 
distinguishes the geometric approach from the efficiency frontier approach (Farrell, 1957; Simar 
and Zelenyuk, 2011; Battese and Coelli, 1995). Although both approaches are non-parametric in 
nature, the emphasis of the latter is on measuring production units' inefficiency in terms of the 
distance from the efficient frontier, recovered by enveloping the data: the more distant a 
production unit from the frontier, the less efficient it is (Dosi et al., 2016). Furthermore, the 
geometric approach captures the variation of production techniques adopted by production units 
in any economic sector and allows one to determine the rate and direction of productivity change. 
Recent developments in robust frontiers analysis (Simar and Zelenyuk, 2011) have resolved many 
shortcomings of the traditional deterministic approach, such as the sensitivity to measurement 
errors and outliers: given that all farms are compared to the frontier, misspecification of it would 
heavily bias the entire analysis. Note, however, that our computed values for heterogeneity 
(volume of the zonotope) and productivity (angle from projections in the zonotope) are measures, 
not estimates. However, we will check  in the empirical analysis how robust this productivity index 
is to the presence of measurement errors in one of the inputs (in our case, land size). Finally, the 
Zonotope approach allows for multi-output analysis and overcomes the shortcomings of existing 
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multi-output frontier models such as the Data envelopment analysis (DEA), the Stochastic 
distance function frontier, and the Stochastic ray frontier which generalized the multi-output ray 
production function using a polar-coordinate angle output vector (Löthgren, 1997). 

The second contribution is empirical as we provide rigorous measures of farms’ agricultural 
productivity and agricultural sector heterogeneity while accounting for farms’ technological 
diversity. These measures are then used to identify the drivers of agricultural productivity in the 
maize sector in Tanzania. The remainder of the paper is organized as follows. Section 2 presents 
in detail the discrete geometric approach to production analysis used in the paper. Section 3 
describes the dataset and provides some descriptive statistics. Section 4 provides empirical 
results associated with the discrete geometric approach, and Section 5 concludes. 
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A Geometric Approach to Production Analysis 
We start this section by providing an empirical motivation for our methodological approach. To 
illustrate the phenomenon of persistent technological heterogeneity among households growing 
maize (single crop plot), we provide some empirical evidence focusing on the labor productivity 
(log) distribution by agroecological zones (AEZs). Labor productivity is defined as the ratio of 
total maize production over total days of labor. Details and summary statistics on these two 
variables are presented in Section 3. We consider five agro-ecological zones: Central Zone 
(Dodoma, Singida, Tabora), Coastal Zone (Dar es Salaam, Lindi, Morogoro, Mtwara, Pwani), 
Northern Zone (Arusha, Kilimanjaro, Manyara, Tanga), Lake Zone (Geita, Kagera, Mara, 
Mwanza, Shinyanga, Simiyu), Southern Highlands Zone (Iringa, Katavi, Kigoma, Mbeya, 
Njombe, Rukwa, Ruvuma)1. Figure A.1 represents the empirical distributions2 (pooled and by 
rounds) of labor productivity in maize production by AEZs in Tanzania. It shows the coexistence 
of households with persistently different levels of productivity across and within agroecological 
zones. The observed heterogeneity in labor productivity in the maize sector is striking, exhibiting 
a ratio top to bottom greater than 5 to 1 (in logs). This is evidence that household-level maize 
growing techniques are not derived from the same production function. The empirical densities 
are also consistent with the spatial distribution of agricultural crops in Tanzania (See Figure A.2) 
as Zones where maize farming is dominant (Northern Zone, Southern Highlands Zone) display 
higher labor productivity on average. 

In the remaining of this section, we provide a brief outline of the geometric approach to 
production analysis that will be used in the research project. Similar to Koopmans (1977), 
Hildenbrand (1981), and Dosi et al. (2016), the production activity, as describing the actual 
technique of firm/farm i, is represented by a vector 

𝑎𝑎𝑖𝑖 = �𝛼𝛼1𝑖𝑖 , … ,𝛼𝛼𝑙𝑙𝑖𝑖,𝛼𝛼𝑙𝑙+1𝑖𝑖 , … ,𝛼𝛼𝑙𝑙+𝑚𝑚𝑖𝑖 � ∈  ℝ+
𝑙𝑙+𝑚𝑚   

 
The production unit i produces (𝛼𝛼𝑙𝑙+1𝑖𝑖 , … ,𝛼𝛼𝑙𝑙+𝑚𝑚𝑖𝑖 ) units of output during the current period by 
means of (𝛼𝛼1𝑖𝑖 , … ,𝛼𝛼𝑙𝑙𝑖𝑖) units of input. Then, one can characterize the short-run production 
possibilities of an industry with N units during the current period by a finite family of production 
activity vectors {𝑎𝑎𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁 . Any production activity vector {𝑎𝑎𝑖𝑖} is associated with a line segment. 

[0,𝑎𝑎𝑖𝑖] = {𝑥𝑥𝑖𝑖𝑎𝑎𝑖𝑖  | 𝑥𝑥𝑖𝑖  ∈  ℝ, 0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1} 

 
1 We do not consider the Western Zone since in our sample, it is only represented by a 
small number of 
households from the Kigoma region. Therefore, we include the Kigoma region in the 
Southern Highlands Zone 
2 estimated using Epanenchnikov Kernel 

(2) 

(1) 
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Hildenbrand (1981) defines the short-run total production set associated with the family  {𝑎𝑎𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁  
as the Minkowsky sum of line segments generated by production activities {𝑎𝑎𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁  

𝑌𝑌 =  ∑ [0,𝑎𝑎𝑖𝑖]𝑁𝑁
𝑖𝑖=1 = {𝑦𝑦 ∈  ℝ+

𝑙𝑙+𝑚𝑚  | 𝑦𝑦 = ∑ ∅𝑖𝑖𝑎𝑎𝑖𝑖𝑁𝑁
𝑖𝑖=1 , 0 ≤ ∅𝑖𝑖 ≤ 1}             

𝑌𝑌 is also called the Zonotope generated by the vectors {𝑎𝑎𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁. Let 𝐷𝐷 denote the projection 
of 𝑌𝑌 on the input space ℝ+

𝑙𝑙 . 

𝐷𝐷 = {𝑉𝑉 ∈  ℝ+
𝑙𝑙  | ∃ 𝑋𝑋 ∈  ℝ+

𝑚𝑚 𝑠𝑠. 𝑡𝑡.  (𝑉𝑉,𝑋𝑋) ∈ 𝑌𝑌}  

 Hildenbrand (1981) then defines the short-run efficient production function 𝐹𝐹 ∶ 𝐷𝐷 →  ℝ+
𝑚𝑚  as  

 

𝐹𝐹(𝑉𝑉) = max{𝑋𝑋 ∈  ℝ+
𝑚𝑚 | (𝑉𝑉,𝑋𝑋)  ∈ 𝑌𝑌 } 

 
This definition implies that the maximum total output in an industry is achieved by allocating, 
without any restrictions, the level (𝑉𝑉1, … ,𝑉𝑉𝑙𝑙) of inputs in the most efficient way over the 
individual production units within the industry.  However, the frontier associated with this 
production function is uninformative on the actual technological set-up of the whole industry 
and therefore, could not be the focal reference both for a normative or positive analysis 
(Hildenbrand, 1981). 

 

From the Zonotope Framework, Dosi et al. (2016). define the main diagonal of a Zonotope Y as 
the line linking the origin 0 = (0, … ,0) with its opposite vertex in Y. Because this diagonal 
expresses both the amount of inputs employed and outputs produced by the industry, it is called 
the production activity of the industry. In terms of vector, it is given by: 

 

𝑑𝑑𝑦𝑦 =  �𝛼𝛼1𝑖𝑖 ,
𝑁𝑁

𝑖𝑖=1

… ,�𝛼𝛼𝑙𝑙𝑖𝑖,
𝑁𝑁

𝑖𝑖=1

�𝛼𝛼𝑙𝑙+1𝑖𝑖 ,
𝑁𝑁

𝑖𝑖=1

… ,�𝛼𝛼𝑙𝑙+𝑚𝑚𝑖𝑖
𝑁𝑁

𝑖𝑖=1

    

 
If all the firms in one industry were to use the same technology, their input-output ratio would be 
proportional implying that all the vector firms would lie on the same line. In    this case 
(minimum heterogeneity case), the associated Zonotope would be of zero volume. Conversely 
(maximum heterogeneity case), the industry contains some firms with almost zero  inputs but 
sufficient outputs and others with a large quantity of inputs but little outputs. In such a case, the 
generated Zonotope is close to a parallelotope. Building on these two extreme cases, Dosi et al. 
(2016) derive rigorous measures of heterogeneity and productivity. 

(6) 

(5) 

(4) 

(3) 
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Let  𝐴𝐴𝑖𝑖1, … ,𝑖𝑖𝑙𝑙+𝑚𝑚   be  the matrix whose rows are vectors {𝑎𝑎𝑖𝑖1 , … ,𝑎𝑎𝑖𝑖𝑙𝑙+𝑚𝑚} and ∆𝑖𝑖1, … ,∆𝑖𝑖𝑙𝑙+𝑚𝑚  , its 
determinant. The volume of the Zonotope Y is given by 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) =  � |∆𝑖𝑖1, … ,∆𝑖𝑖𝑙𝑙+𝑚𝑚|
1≤𝑖𝑖1≤⋯,≤𝑖𝑖𝑙𝑙+𝑚𝑚

 

 

(7) 
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+ 

It is a good candidate to assess heterogeneity within an industry as small volume corresponds to 
minimum heterogeneity and large volume corresponds to maximum heterogeneity. However,  𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) 
grows as the number of firms grows and also depends on the units in which inputs and outputs are 
measured. To overcome these shortcomings, Dosi et al. (2016) define heterogeneity as the ratio of 
the volume 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) over the volume 𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑦𝑦� =  ∏ |𝑎𝑎𝑖𝑖|𝑁𝑁

𝑖𝑖=1   of an industry 𝑃𝑃𝑦𝑦 with production 
activity 𝑑𝑑𝑦𝑦 = ∏ |𝑎𝑎𝑖𝑖|𝑁𝑁

𝑖𝑖 . This normalized ratio is called the Gini volume: 

𝐺𝐺(𝑌𝑌) =  
𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑦𝑦)

 

 
We will now use t h e  notation for the one-output case (𝑎𝑎𝑖𝑖  𝜖𝜖 ℝ𝑙𝑙+1) but the concept 
presented here can easily be extended to the multiple-outcome case. The measure of the efficiency 
of the industry is the angle formed by the industrial production activity vector 𝑑𝑑𝑦𝑦 with the space 
generated by all inputs. This is because the higher the angle, the more the industry is able to 
produce more output with the same quantity of inputs. The measure of productivity for a given 
industry with N production units is given by the tangent of that angle: 

𝑃𝑃 =  𝑡𝑡𝑔𝑔 �Θ𝑙𝑙+1�𝑑𝑑𝑦𝑦�� =  
∑ 𝛼𝛼𝑙𝑙+1

𝑗𝑗𝑁𝑁
𝑖𝑖=1

|�𝑝𝑝𝑝𝑝(𝑙𝑙+1)�𝑑𝑑𝑦𝑦��|
 

where �|𝜐𝜐|� represent the norm of vector 𝜐𝜐 and  𝑝𝑝𝑝𝑝(𝑙𝑙+1)(𝑎𝑎𝑖𝑖) = (𝑎𝑎1𝑖𝑖 , … ,𝑎𝑎𝑙𝑙𝑖𝑖) for all 𝑎𝑎𝑖𝑖 ∈  ℝ+
𝑙𝑙+1. 

The framework allows us to compute the elasticity of substitution and to understand under what 
circumstances does the entry of a new production unit increase or decrease the heterogeneity of 
a given industry. To empirically applied this framework, we will use the Zonotope Stata command 
developed by Cococcioni et al. 2019. 

 

Farm-level measure of productivity and heterogeneity.  Similar to the aggregate level, the 
measure of the productivity of a farm/household i, with technology 𝑎𝑎𝑖𝑖 , is given by the tangent 
of the angle formed by the vector 𝑎𝑎𝑖𝑖 , with the space generated by all inputs. The measure of the 
heterogeneity of a farm/household i, with technology 𝑎𝑎𝑖𝑖 , is given by the tangent of the angle 
formed by the projection of 𝑎𝑎𝑖𝑖  𝑝𝑝𝑝𝑝(𝑙𝑙+1)(𝑎𝑎𝑖𝑖) in the space generated by all inputs with the projection 
of  𝑑𝑑𝑦𝑦(𝑝𝑝𝑝𝑝(𝑙𝑙+1)�𝑑𝑑𝑦𝑦� ) on the same space. It measures to which degree the individual input 
combinations diverge from the industry average combination. The graphical  intuition behind 
productivity and heterogeneity measurements at the farm level is illustrated in Figure 2. 

 

 

  

(9) (8) 
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Empirical Strategy 
We consider the following relationship between output and inputs within pure-stand maize plots: 

𝑌𝑌𝑖𝑖ℎ𝑡𝑡 = (𝐿𝐿𝑑𝑑𝑖𝑖ℎ𝑡𝑡 ,𝐿𝐿𝑎𝑎𝑖𝑖ℎ𝑡𝑡) 

 

where 𝑌𝑌𝑖𝑖ℎ𝑡𝑡 is the total quantity of maize harvested on plot i by household h in survey round t 
and measured in kilograms, 𝐿𝐿𝑑𝑑𝑖𝑖ℎ𝑡𝑡 is the total planted area on plot i, and 𝐿𝐿𝑎𝑎𝑖𝑖ℎ𝑡𝑡 is the total pre-
harvest labor on plot i. It is measured as the total number of person-days spent on pre-harvest 
activities by either hired laborers or their own household members. Similar to Gollin and Udry 
(2021), the production function of Equation 10 is a simplification as it abstracts away from the 
multistage process associated with maize farming, which also includes the preparation of labor and 
land. Other potential inputs such as irrigation or machinery, commercial fertilizer, or other 
agrochemicals are excluded as only a small fraction of Tanzanian maize pure-stand plots use 
them.33 Equation 10 with two inputs is also convenient for the application of the Geometric 
approach as it allows us to visualize graphically the shape of zonotopes in a three-dimensional 
space (one output and two inputs). Finally, we focus on maize as a single crop per plot to avoid 
the difficulty of measuring yield as physical quantities in presence of inter-cropping. 

We apply the geometric approach to derive nonparametric measures of productivity at the plot 
level and technological heterogeneity measures at the zone level. Finally, we perform a 
comparative analysis of results derived from our approach with those obtained from the efficient 
frontier approach, the DEA analysis by comparing productivity changes obtained from the 
geometric approach with the Malmquist Index generated from the DEA analysis. 

The next step in our empirical analysis is to use agricultural productivity obtained from the 
geometric analysis as the outcome variable in the following regression: 

𝑂𝑂𝑖𝑖ℎ𝑧𝑧𝑡𝑡 = 𝛾𝛾𝑋𝑋𝑖𝑖ℎ𝑧𝑧𝑡𝑡 + 𝛿𝛿𝑧𝑧𝑡𝑡 + 𝜀𝜀𝑖𝑖ℎ𝑧𝑧𝑡𝑡 

where 𝑂𝑂𝑖𝑖ℎ𝑧𝑧𝑡𝑡 is the agricultural productivity of plot i from household h in zone z on round 
t. 𝑋𝑋𝑖𝑖ℎ𝑧𝑧𝑡𝑡 is a vector of plot, household, and community-level characteristics including access to 
markets, community infrastructure, household demographics, weather, soil, and land quality 
variables. 𝛿𝛿𝑧𝑧𝑡𝑡 is zone-round fixed effects to control for time-variant zone-level unobservable 
including zonal policy shocks.  Finally, 𝜀𝜀𝑖𝑖ℎ𝑧𝑧𝑡𝑡  is the error term.  We cluster the standard errors 

 
3Irrigation is used on less than 2% of plots. We do include inputs such as fertilizer (both organic 
and chemical used on 15% of plots, and pesticides on 11% of   plots on the second step of 
the analysis, where we consider a wider range of factors related to agricultural productivity. 

 

(10) 

(11) 



16  

at the community level. The parameter of interest is γ, which captures the effects of time-variant 
factors, 𝑋𝑋𝑖𝑖ℎ𝑧𝑧𝑡𝑡, on plot productivity. 
We conclude this section by discussing the implications of land size measurement errors for our 
regression analysis. Indeed, there is important empirical literature documenting the presence of 
land size measurement errors (See Dillon et al. (2019)) in the Living Standards Measurement 
Study–Integrated Surveys on Agriculture (LSMS-ISA) at the World Bank which is the data set 
used in this paper. As an input variable in the geometric approach, the fact that land size suffers 
from measurement errors implies that the obtained productivity index might be mismeasured. 
As this productivity measure is the dependent variable in our regression analysis, we must 
access how it could introduce biases in our estimates. If we assume that the error introduced 
by land size on the productivity index is classical, we will still obtain unbiased and consistent 
estimates but larger standard errors. However, as shown by Abay, Abate, Barrett, and Bernard 
(2019) and Abay, Bevis, and Barrett (2021), productivity measures are likely to suffer from 
nonclassical measurement errors associated with plot size which could result in severe bias in our 
estimates. Abay et al. (2019) argue that using an improved measure of the dependent variable to 
partially correct for potential bias is preferable to no correction. Building on that suggestion, we 
present and compare our empirical analysis estimates obtained with productivity measures 
generated using the self-reported and the GPS-measured plot sizes respectively. 
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Data 

Data source 
For the analysis, we use a nationally representative panel data set from Tanzania collected  in 
four rounds4. These data were collected by the National Bureau of Statistics of Tanzania with the 
support of the World Bank’s program on Living Standards Measurements Surveys LSMS-ISA. 
The survey includes data on all plots cultivated by the household including which household 
member(s) manage the plot, and which supply labor on the plot, as well as detailed information 
on inputs used and output harvested during the long rainy season.5  

The survey also includes detailed characteristics of the households and their farming activities. 
We have information on the household size, each household member’s age, education level, and 
relationship to the household head, as well as information on their supply of labor for household 
farming activities.  Additionally for each household, the data includes plot-level information on 
crops cultivated, inputs used on plot and soil characteristics such as soil type and quality, and 
information on erosion. The data is merged with climate variables such as measures of rainfall. 
The decision-making unit in our analysis is the farming household. 

We supplement our main dataset with LSMS-ARENA, an LSMS-ISA data compilation provided 
by the Advancing Research on Nutrition and Agriculture project Phase II (ARENA- II) at IFPRI. 
ARENA Phase II is an ongoing project from 2018 to 2020. One of ARENA’s innovations is to 
merge a wide range of GIS indicators on agriculture, climate, demography, and infrastructure with 
LSMS surveys  based on the latitude and longitude coordinates at the survey clusters.6  

Variable construction 
Variables in the first step analysis.    The first step of analysis is conducted at the plot level.  
Our dataset comprises all pure-stand maize plots, a total of 3,188 plots among 1,870 households 
across the four rounds. We remove some implausible observations from the sample. First, we 
drop households where the yield is larger than 8000 kg/ha.7 We also remove implausibly large 
plots, which we determine using the following criteria: We drop plots where the land size is higher 
than the 99 percentile when the land has implausibly low yield (below 1 percentile). Such 
observations also need to rely on self-reported land size such  that there is no GPS information 

 
4 The sample design allows analysis at four primary domains of inference, Dar es Salaam, other 
urban areas on mainland Tanzania, rural mainland Tanzania, and Zanzibar. The 
representativeness is similar 
across all the four rounds of data (2008, 2010, 2012 and 2014). 
5 The data and documentation are available at 
http://surveys.worldbank.org/lsms/programs/integrated-surveys-agriculture-ISA/ 
6 More information on ARENA II is available at https://www.ifpri.org/project/advancing-
research-nutrition-and-agriculture-arena. 
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available. After these adjustments, our sample size is 2674 pure-stand maize plots among 1691 
households. 

We use the crop-plot level dataset from ARENA to create variables for the first step that are at 
the level of a maize purestand plot. This dataset includes all four rounds and both seasons (long 
rainy, and short rainy) in each round. First, out of a total of 62,868 observations, we delete all the 
crop-plot level observations where the crop is a tree crop. This reduces the sample size to 32,539. 
Next, removing the observations recorded in the short rainy season, we are left with 25,211 
observations. Next, dropping all other observations than maize purestand leaves us with 3,188 
such plots. These plots are distributed across 1,870 households in an unbalanced 4-wave panel, 
that has between 617 and 1083 observations per round.  Next, there are a total of 130 
observations where the quantity harvested is either missing (129 observations) or zero (1 
observation).  We delete these observations as well.  We are left with 3,058 purestand plots. 
Finally, we restrict the dataset so that we drop observations where the self-reported land size is 
above the 99th percentile (all 27 plots where land size is over 20 acres, the maximum being 
implausibly high, 600), are deleted.  These 27 plots are distributed across 25 households. Next, 
we also drop the observations with implausibly low yield. We delete the observations that are in 
the 1st percentile of the yield distribution. This removes all plots where yield (kg/acres) is below 
9 and as low as 0.5. This removes 27 observations distributed across 26 households. We are left 
with a sample of 2,674 purestand maize plots distributed across a total of 1,691 households in 4 
rounds.  Now in each round, we have between 536 and 878 plots. Inside this dataset, we have 
created variables for yield, land size (both self-reported and a variable where we use the GPS and 
self-reported when GPS is unavailable), the amount of maize produced measured in kg, and the 
value of maize (using ARENA variable “estimated value of harvest in ths”). 

After creating these variables, we use the ARENA dataset which has input data at the    plot 
level to create our input variables. In this step, we create variables for fertilizer use on the plot. 
We find that 83 percent of plots do not use any inorganic fertilizer, and 87 percent of plots 
do not use any organic fertilizer.8 We create a variable for the quantity of total (inorganic and 
organic) fertilizer used on the plot in kg. We also create variables for family labor, and hired 
labor (a total in land preparation, weeding, and harvesting measured as days for both 
variables). 

For several other plot-specific variables, we use the raw LSMS data, which we then merge with 
ARENA data for final analysis. These variables are used in the second step of the analysis. We 
have dummy variables for good and average soil quality, the omitted  category being poor 
soil quality. We have variables denoting t h e distance to the road, distance    to home, and 
distance to the market (in km). We also use the LSMS data at the plot level to   construct 
variables for t h e  plot manager’s age and age squared, and whether the plot manager  is 
female. Furthermore, we also use the LSMS data to construct variables at the household 
level (household size, female household head, years of schooling of household head, asset 
index, access to electricity, whether household experienced any shock and any asset losses). 
In the first step, we consider land size and labor as inputs in maize farming. For labor, 
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we consider both family labor and hired labor on plots, measured as days spent in land 
preparation, weeding, and harvesting. Due to some high- value outliers in the family  labor 
variable, we censor the upper tail of the family labor distribution, such that we censor 
implausibly high values to an upper limit defined the following way: We consider household 
members eligible to work on t h e  farm to be all household members who are 6 years or 
older to  derive the maximum number of people who can supply family labor on the farm. We 
consider one  person’s maximum labor supply to be 120 days, corresponding to working 
each day for four months, the length of the agricultural season of the long rainy season. These 
limits  together yield a household-specific maximum labor supply. There are 4 plots whose  
labor supply extends this limit, we replace those outlier values with this upper limit created. 
The final labor variable included in the analysis includes both family and hired labor with 
non-zero labor days. We do not censor outlier values of hired labor, as hired labor does not 
have a theoretical upper bound. We also dropped islands and the final sample size for our 
first step analysis comprises 1677 households growing maize on 2542 pure-stand plots. 

 

Variables in the second step analysis. For the second step, we consider the plot, household, 
community-level characteristics, and geographical variables as factors influencing agricultural 
productivity at the plot level. The summary statistics are reported in Table 1. We can see that the 
average household size is approximately five members, with household head completing about 
4.8 years of education. 

The asset index is constructed using factor analysis of dummies denoting ownership of durable 
assets. These include household assets not related to farming activities, such as television or car, 
and the index is thus an indicator of household durable wealth. We also include total acres of 
land owned by households in the second step, this variable includes all land and is not restricted 
to maize production,  nor farming. We can see that as many as 82.9 percent  of households 
reported having been affected by a shock on assets or income. It is also worth noticing that a 
household has on average two to three plots. 

Next we turn to plot-specific variables starting with soil quality. Most maize purestand plots are 
perceived to have either good (52 percent) or average (44 percent) soil quality, . 14 percent of 
plots are declared to have erosion problems while only 6 percent of plots on average are steep.  
About 80 percent of plots are solely owned by the farmer while just 8 percent of them have a 
title. Regarding the usage of agrochemicals, pesticides are applied on about 8.5 percent of the 
plots on average, while 17.7 percent of plots have received inorganic fertilizers. Organic fertilizer 
use is similarly frequent at 13.6 percent. Almost 34 percent of plots use improved or purchased 
seeds. While 53.5 percent of plots have more managers than one, just 24.6 percent of plots have 
a female manager as the main manager.  The average age of the main plot manager is 46 years. 

At the community level, we include the length of the growing period (days), the average rainfall 
and temperature, as well as the elevation (above/below sea level) and the slope (gradient of 
steepness). The variables slope and elevation are the means for plots in that household. We also 
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include temperature and rainfall in the analysis. We take the monthly averages for the months 
from February to July that correspond to the agricultural season in question. The variables used 
are the demeaned version of this variable, where we subtract the mean (the country-level mean 
pooled across rounds) from the community average for that plot-round observation. 
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Results 

Measures of agricultural productivity and technical 
heterogeneity 

We start by providing a graphical illustration of Zonotopes. Figure 3 illustrates Zonotopes for 
maize growers in the Pwani (left) and Kigoma (right) regions using pooled data from 2008 to 
2014. Based on the shape of their respective Zonotopes, it is clear that Pwani is more  
heterogeneous than Kigoma, but Kigoma is more productive. This graphical guess is vindicated 
by productivity coefficients which are respectively 4.52 and 5.09.  

Next, in Table 2 we present the zonal level technological heterogeneity, agricultural productivity, 
and labor intensity measures. The first observation is that the chosen normalization approach for 
the volume of the zonotope seems to be effective, as there is apparently no relationship between 
the number of plots-generators and the heterogeneity coefficients. Our findings seem to be in 
accordance overall with the map of the spatial distribution of crops  in Tanzania described in 
Figure 4. On average, the Northern and the Southern Highlands zones are consistently the most 
productive maize growing zones. On average, the Coastal zone exhibits the highest level of 
technological heterogeneity among maize growers while the  Lake zone on average is the most 
labor-intensive. 

In Table 3 we investigate the growth of productivity, heterogeneity, and labor intensity, thus the 
dynamics of the maize farming sector over time. Overall, productivity growth seems to be 
accompanied by an eventual decrease in labor intensity and a volatile heterogeneity. The first 
column corresponds to the growth rate between the years 2008 and 2010, the second between 
t h e  years 2010 and 2012, and similarl y  for the third column. For example, between 2008 
and 2010 Productivity grew by 6.67 percent across all zones. Across the sample, productivity 
growth is positive and increases at an accelerating rate.  Heterogeneity displays a more volatile 
pattern: it first decreases, then increases, and then decreases again over all zones. The labor 
intensity growth rate shows a declining pattern going from a 22 percent increase between 2008-
2010 down to a 7 percent decline between the last two waves. 

However, when looking at regions separately, no clear zonal patterns emerge over time. For 
example in terms of heterogeneity we see first a decrease in heterogeneity followed by an increase, 
or an increasing and then decreasing growth rate in all zones except in the central zone where the 
growth rates are positive throughout. In terms of productivity, we also see both negative and 
positive growth rates for all zones except Coastal, where productivity growth is always positive 
at an accelerating rate. In terms of labor intensity, similar up and down movements can be 
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observed, there is no single zone where the growth rate is not both negative and positive during 
the time period. 

In Table 7, we compare our computation of productivity change as presented in Table 3 to those 
obtained with an efficiency measure, the Malmquist Index. In order to run the analysis on the 
same set of data, we balance the panel of plots in any of the three couples of years over which we 
investigate productivity change (2008-2010, 2010-2012, and 2012-2014). This ensures that in the 
estimates of Table 7 we consider the same number of observations    both in the computation 
of our proposed measure of agricultural productivity changes in rates of growth for the 
Malmquist index. The two measures are often in agreement in suggesting a productivity increase 
(decrease) when productivity change is positive (negative)  and Malmquist index is smaller (bigger) 
than one. 

Finally, we compare the productivity measures obtained using self-reported plot size with the one 
obtained using GPS-measure plot size. Figure 5 shows the distribution of self-reported and GPS 
plot sizes for pure-stand maize plots in Tanzania. We can observe significant differences across 
these distributions. However, quite remarkably, the productivity indices computed using these 
different plot size measurements have almost identical empirical distributions (Figure 6). This 
finding suggests the potential robustness of the geometric approach to measurement errors in 
the input variables. 

 

Factors associated with higher agricultural 
productivity 

In the first-step, we derive agricultural productivity measures at the plot level.  To identify the 
factors associated with higher agricultural productivity, we regress productivity measures  on plot, 
household, community-level characteristics, and weather conditions. Table 4 reports the 
estimated coefficients of equation (11), using the logarithm of plot-level productivity as the 
dependent variable. From columns 1 to 4, we sequentially include different sets of explanatory 
variables. Column 1 only controls for soil quality and other land characteristics. Column 2 adds 
the land manager’s gender and age and other manager charachteristics. Column 3 further includes 
household demographics and welfare indicators. Column 4 is our full model which further 
includes terrain characteristics (elevation, slope) and weather controls. In all columns, we control 
for zone-specific year fixed effects and cluster the standard errors at the village level. 

Our interpretation is based on the full model in Column 4 while noticing that the coefficient 
estimates are largely robust across all model specifications. The results suggest that the good 
quality of the soil has a significant and positive effect on productivity. As matter of fact, the soil 
being of good and average quality increases productivity by respectively 53.97 and 26.19 percent, 
respectively, compared to a plot with the soil of bad quality. A 1 km increase in the distance from 
plot to road is associated with 14.7 percent increase in productivity. Futhuremore, an increase of 
1 km in the distance from the plot in the distance from the plot to the market is associated with a 
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4.3 percent increase in agricultural productivity. This result is consistent with the findings from 
Gollin and Udry (2021). We could explain this by the fact that when a plot is further from the 
market the manager is more inclined to invest more efforts and resources to compensate for 
the time  and the transportation cost associated with the plot. Using inorganic fertilizer is 
associated with increase in agricultural productivity by 33.33 percent. While using improved seeds 
is associated with a 12.4 percent decrease in productivity. 

We spot a U-shape relationship between the age of the manager and the dependent variable. 
Everything else being constant, an increase of 1 household member is correlated with 2.3 percent 
decrease in agricultural productivity. Asset index and farm equipment index are also positively 
associated with maize productivity. We also detect an inverted U-shape relation between 
productivity and the number of plots held by the household. The length of the growing period 
and the (demeand) temperature are negatively associated with productivity (resp. 0.4 and 6 
percent). This suggests that the more days a given crop takes to grow the less productivity it 
yields. All the variables cited above are significantly associated with productivity. 

Although the remaining set of variables is not significant in our regression, it is worth noticing 
that most of them correspond to findings in the existing literature. An average plot tends to have 
higher productivity if it has access to electricity, land with erosion problems, and the managers 
use pesticides in the main crop season. Alternatively, it tends to have lower productivity if it has 
land in steep locations but also if the household encountered shocks.  

These results are mostly consistent with prior reasoning and the previous literature. Households 
are more efficient when they are equipped with higher productive assets. Households with the 
higher assets are also less likely to face budget constraints and can apply inputs at the right times 
to improve efficiency. Defect soil and land conditions are important factors associated with lower 
efficiency (Abay et al., 2019). Higher rainfall is associated with higher  productivity in drought-
prone locations. The inverse relationship between landholding and farm productivity has long 
been documented in the literature  

To understand which groups of variables are more correlated with the distribution of the 
agricultural productivity index, we decompose the variance explained by the regression (measured 
by R-squared) into contributions over particular groups of regressors using Shapley values. They 
represent the mean marginal contribution of each group of variables to the overall model R-
squared. The decomposition is presented in Table 5 and we observe that plot-level variables have 
the highest mean marginal contribution, explaining 29.16% of the observed variation, highlighting 
the importance of environmental conditions at the plot level. Managerial, household, and 
community  variables have almost similar contributions explaining respectively 15%, 26%, and 
13% of the variation. 

Finally, as a robustness check exercise, we compare estimates obtained using productivity index 
generated by self-reported land size with those obtained using the productivity index generated 
by GPS-measured land size.  Overall the results are similar and the estimates are of similar 



24  

magnitudes. The same patterns are observed when comparing the decomposition of variance 
explained in both regressions (See Table 5 and Table 9) 
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Conclusion 
This study introduces a new approach to measuring agricultural productivity while accounting for 
technological heterogeneity among farmers. The Zonotope approach allows the quantification of 
agricultural productivity and technological heterogeneity without relying on typical a priori 
functional form assumptions associated with methods such as the Stochastic Frontier  Analysis 
widely use in the empirical literature. Empirical analysis hints at the robustness    of the Zonotope 
approach to the presence of measurement errors in inputs (land size). Our findings suggest that 
even a homogeneous sector like maize production can conceal a variety  of agricultural practices 
persistent over time which must be accounted for when designing agricultural policies to improve 
yields and households’ welfare. We compare our measures of productivity change to those 
obtained with efficiency measures from Data Envelopment Analysis (Malmquist Index) and 
observe that the two measures are often in accordance. Using a regression analysis with the 
agricultural productivity index as the dependent variable, we find that the socio-economic, 
environmental, and geographical factors associated with higher agricultural productivity are 
consistent with findings in the existing literature. Finally, there are two potential extensions for 
this study. First, the Geometric approach can accommodate multiple-output production 
technology which could allow us to investigate inter-cropping and inputs allocation efficiency. 
Second, the Geometric approach can integrate the entry and exit of production units thus 
allowing us to investigate the diffusion of new agricultural technology.  
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Tables 

Table 1: Summary statistics of maize pure stand plot characteristics 
                 2008 2010 2012 2014    Total 

Maize harvested quantity(kg) 554.8 476.4 579.1 727.6 572.1 
 (779.5) (633.3) (971.3) (1114.1) (884.5) 

Land size 2.256 2.208 2.530 2.443 2.369 
 (2.386) (2.535) (2.898) (2.808) (2.685) 

Total days of labor (days) 84.08 67.13 74.88 76.22 74.89 
 (82.48) (63.67) (74.77) (76.67) (74.14) 

Soil quality is good 0.524 0.433 0.471 0.411 0.461 
 (0.500) (0.496) (0.499) (0.492) (0.499) 

Soil quality is average 0.440 0.482 0.457 0.494 0.467 
 (0.497) (0.500) (0.498) (0.501) (0.499) 

Having erosion problem 0.140 0.165 0.119 0.143 0.140 
 (0.347) (0.371) (0.324) (0.351) (0.348) 

Being steep 0.0548 0.0511 0.0350 0.0243 0.0417 
 (0.228) (0.220) (0.184) (0.154) (0.200) 

Distance from plot to home (Km) 3.175 3.987 6.067 6.098 4.895 
 (5.280) (20.49) (31.88) (23.42) (23.73) 

Distance from plot to the road (Km) 1.900 2.027 2.452 2.683 2.261 
 (2.546) (3.533) (4.669) (6.956) (4.564) 

Distance from plot to the market 
(Km) 

8.195 14.24 13.61 10.52 12.11 

 (8.990) (18.57) (16.24) (14.78) (15.67) 

Solely owned by the household 0.858 0.847 0.848 0.565 0.799 
 (0.349) (0.361) (0.359) (0.496) (0.401) 

Plot has a title 0.0416 0.0838 0.126 0.0375 0.0810 
 (0.200) (0.277) (0.332) (0.190) (0.273) 

Use of Organic Fertilizer on the plot 0.147 0.107 0.153 0.137 0.136 
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                 2008 2010 2012 2014    Total 
 (0.355) (0.309) (0.360) (0.344) (0.343) 

Use of Inorganic Fertilizer on the 
plot 

0.144 0.190 0.180 0.190 0.177 

 (0.351) (0.393) (0.384) (0.393) (0.382) 

Use of Pesticides on the plot 0.110 0.0795 0.0654 0.0993 0.0846 
 (0.313) (0.271) (0.247) (0.299) (0.278) 

Improved seeds 0.136 0.459 0.388 0.442 0.338 
 (0.343) (0.500) (0.488) (0.497) (0.473) 

Multiple managers on the plot 0.432 0.570 0.599 0.481 0.535 
 (0.496) (0.495) (0.490) (0.500) (0.499) 

Main manager is a female 0.265 0.250 0.209 0.289 0.246 
 (0.442) (0.433) (0.407) (0.454) (0.431) 

Age of the main plot manager 46.22 46.50 47.09 45.42 46.45 
 (15.47) (15.38) (15.99) (15.00) (15.55) 

Age of the main manager (squared) 2375.7 2398.5 2473.3 2287.2 2399.2 
 (1579.7) (1554.3) (1646.5) (1499.2) (1582.1) 

Individual years of schooling 4.768 4.794 4.891 4.991 4.857 
 (3.158) (3.236) (3.326) (3.478) (3.294) 

Number of manager 1.459 1.642 1.641 1.494 1.578 
 (0.553) (0.619) (0.561) (0.531) (0.577) 

Household size 5.514 5.665 6 5.294 5.680 
 (3.040) (3.016) (3.768) (3.006) (3.300) 

Household head school years 4.741 4.776 4.835 4.947 4.819 
 (3.121) (3.241) (3.332) (3.476) (3.290) 

Having access to electricity 0.0340 0.0469 0.0619 0.0883 0.0566 
 (0.181) (0.212) (0.241) (0.284) (0.231) 

Asset index (asset dummies) -0.363 -0.399 -0.358 -0.376 -0.374 
 (0.414) (0.458) (0.582) (0.603) (0.522) 
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                 2008 2010 2012 2014    Total 

HH, Any shock (0/1) 1 0.813 0.754 0.812 0.829 
 (0) (0.391) (0.431) (0.391) (0.377) 

HH, asset losses (0/1) 0.567 0.385 0.336 0.322 0.393 
 (0.496) (0.487) (0.473) (0.468) (0.488) 

Number of plots 2.739 3.021 2.904 2.402 2.813 
 (1.383) (1.670) (1.669) (1.229) (1.556) 

Number of plot (squared) 9.412 11.91 11.22 7.276 10.33 
 (9.837) (14.77) (15.07) (7.994) (13.08) 

Agricultural extension index (Source 
based) 

0.253 0.161 0.130 0.159 0.169 

 (0.496) (0.394) (0.376) (0.401) (0.415) 

Farm implements index (diversity) 1.401 1.482 1.827 2.073 1.686 
 (0.920) (1.063) (1.292) (1.223) (1.174) 

Slope (gradient of steepness that 
measured in degree) 

2.044 1.835 1.802 1.762 1.853 

 (1.686) (1.548) (1.502) (1.759) (1.603) 

Length of growing period in days 199.7 201.4 201.2 202.7 201.2 
 (24.22) (23.51) (24.48) (21.85) (23.71) 

Demeaned average temperature -0.734 0.309 -0.137 0.607 -3.64e-08 
 (2.112) (2.070) (2.023) (2.002) (2.100) 

Demeaned average rainfall 11.64 6.596 -11.94 -0.831 -9.35e-08 
 (22.09) (31.56) (15.57) (29.20) (26.45) 

Observations 2542     

Note: Mean coefficients. Standard 
deviations a r e  in parentheses. 
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Table 2: Measures of Productivity, Heterogeneity, and labor intensity among Regions and Years in 
Tanzania 

 Year 
Zones 2008 2010 2012 2014 
Agricultural Productivity     

Central 5.247 5.537 7.828 6.098 
Coastal 4.165 4.303 5.869 10.674 
Lake 5.557 6.047 5.818 5.424 
Northern 6.319 8.428 8.246 13.961 
S.Highlands 8.486 9.301 8.873 11.081 
All zones 6.590 7.030 7.634 9.028 
Technological Heterogeneity     

Central 0.161 0.164 0.189 0.196 
Coastal 0.206 0.152 0.213 0.259 
Lake 0.204 0.178 0.187 0.144 
Northern 0.184 0.175 0.226 0.128 
S.Highlands 0.193 0.175 0.198 0.198 
All zones 0.204 0.186 0.220 0.199 
Labor intensity     

Central 0.026 0.036 0.042 0.029 
Coastal 0.026 0.026 0.027 0.049 
Lake 0.037 0.041 0.041 0.031 
Northern 0.031 0.041 0.039 0.035 
S.Highlands 0.024 0.029 0.026 0.025 
All zones 0.027 0.033 0.034 0.031 
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Table 3: Rates of Growth of Productivity and Heterogeneity among Regions and Years in Tanzania 
 Year  

Zones 2010 2012 2014 
Productivity    

Central 5.522 41.382 -22.108 
Coastal 3.310 36.406 81.857 
Lake 8.825 -3.788 -6.771 
Northern 33.376 -2.155 69.305 
S.Highlands 9.607 -4.608 24.884 
All zones 6.677 8.590 18.257 
Heterogeneity    

Central 1.991 15.043 3.489 
Coastal -26.049 39.870 21.379 
Lake -12.838 5.365 -22.919 
Northern -4.668 29.179 -43.543 
S.Highlands -9.326 13.361 0.039 
All zones -8.562 18.048 -9.465 
Labor intensity    

Central 39.788 15.433 -29.474 
Coastal -1.673 3.807 83.139 
Lake 11.056 -1.788 -24.042 
Northern 30.218 -3.204 -12.370 
S.Highlands 23.509 -11.042 -3.664 
All zones 22.144 2.276 -7.157 
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Table 4: Fixed-effects regressions with Productivity 

 Log of productivity 
 (1) (2) (3) (4) 
Soil quality is good .5121*** .5195*** .5142*** .5397*** 
 (.0938) (.0953) (.0929) (.0889) 
Soil quality is average .2585*** .2651*** .2439*** .2619*** 
 (.0777) (.0810) (.0824) (.0859) 
Having erosion problem .0737 .0780 .0472 .0504 
 (.0562) (.0535) (.0557) (.0522) 
Being steep -.2021* -.2382** -.2170** -.1273 
 (.1174) (.1055) (.0940) (.1094) 
Distance from plot to home (Km) -.0007 -.0009 -.0012 -.0015 
 (.0017) (.0016) (.0017) (.0018) 
Distance from plot to the road (Km) .0127* .0118* .0126** .0147*** 
 (.0067) (.0067) (.0063) (.0056) 
Distance from plot to the market (Km) .0068*** .0057** .0049** .0043* 
 (.0022) (.0023) (.0024) (.0025) 
Solely owned by the household -.1100* -.0447 -.0667 -.0535 
 (.0589) (.0687) (.0713) (.0682) 
Plot has a title -.1085 -.1071 -.1675* -.1595 
 (.0955) (.0941) (.0982) (.0983) 
Use of Organic Fertilizer on the plot .0964 .0960 .0268 .0244 
 (.0840) (.0831) (.0779) (.0782) 
Use of Inorganic Fertilizer on the plot .4341*** .4002*** .3532*** .3333*** 
 (.0746) (.0735) (.0731) (.0713) 
Use of Pesticides on the plot .0854 .0767 .0307 .0381 
 (.1083) (.0950) (.0898) (.0849) 
Improved seeds .2276*** .1946*** .1317** .1240** 
 (.0522) (.0576) (.0619) (.0600) 
Multiple managers on the plot  -.1243 -.2076 -.1715 
  (.1594) (.1571) (.1591) 
Main manager is a female  .0111 .0329 .0409 
  (.0689) (.0696) (.0692) 
Age of the main plot manager  -.0252** -.0299** -.0300** 
  (.0123) (.0130) (.0124) 
Age of the main manager (squared)  .0002 .0002 .0002 
  (.0001) (.0001) (.0001) 
Individual years of schooling  .0282*** -.0308 -.0357 
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 Log of productivity 
 (1) (2) (3) (4) 
  (.0096) (.0452) (.0454) 
Number of manager  .1669 .2477* .1979 
  (.1312) (.1293) (.1291) 
Household size   -.0245*** -.0232** 
   (.0086) (.0100) 
Household head school years   .0504 .0571 
   (.0424) (.0428) 
Having access to electricity   .2228 .2013 
   (.1908) (.1920) 
Asset index (asset dummies)   .1814** .1770** 
   (.0800) (.0825) 
HH, Any shock (0/1)   -.0500 -.0319 
   (.0822) (.0844) 
HH, asset losses (0/1)   .0021 .0188 
   (.0679) (.0702) 
Number of plots   .0830 .0920 
   (.0628) (.0622) 
Number of plot (squared)   -.0123* -.0127* 
   (.0071) (.0071) 
Agricultural extension index (Source based)   .0523 .0410 
   (.0502) (.0497) 
Farm implements index (diversity)   .1744*** .1616*** 
   (.0281) (.0280) 
Slope (gradient of steepness that measured in degree)    -.0176 
    (.0228) 
Length of growing period in days    -.0044*** 
    (.0017) 
Demeaned average temperature    -.0607*** 
    (.0191) 
Demeaned average rainfall    -.0034 
    (.0023) 
Observations 1986 1974 1932 1913 
R2 .1196 .1485 .1906 .2054 
R2adj .1051 .1318 .1700 .1832 

Standard errors in parentheses  * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 5: Decomposition of R-squared for productivity regression analysis 

Input Shapley 
Plot Characteristics 29.156 
Manager Characteristics 14.994 
Household Characteristics 25.966 
Community Characteristics 12.486 
Zones-Year fix-effects 17.397 

 
 
 

Table 6: Estimated Productivity and Standard Error using bootstrap with 100 replications 

Region Productivity Std. Error 
dodoma 6.716 0.701 
arusha 11.024 1.511 
kilimanjaro 13.894 11.423 
tanga 7.142 0.725 
morogoro 7.373 1.090 
pwani 4.520 1.401 
DAR ES SALAAM 8.780 11.284 
lindi 2.973 0.205 
mtwara 3.655 0.280 
ruvuma 8.175 0.653 
iringa 10.948 1.062 
mbeya 7.644 0.506 
singida 4.246 0.218 
tabora 6.832 0.298 
rukwa 12.240 0.923 
kigoma 5.092 1.378 
shinyanga 6.244 0.266 
kagera 2.138 0.132 
mwanza 4.583 0.512 
mara 6.713 0.904 
manyara 14.489 5.608 
njombe 6.156 2.448 
katavi 8.762 5.614 
simiyu 7.227 0.983 
geita 2.882 0.301 
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Table 7: Rates of Growth of Productivity and Malmquist index of productivity among Regions 
and Zones in Tanzania 

 Productivity growth Malmquist Index 
Unit 2008-2010 2010-2012 2012-2014 2008-2010 2010-2012 2012-2014 
Regions       
dodoma 0.534 0.264 -0.406 1.055 1.179 0.707 
arusha -0.272 0.119 0.153 0.800 0.902 1.533 
kilimanjaro -0.200 1.714 -0.321 0.742 1.797 1.055 
lindi 0.077 -0.120 -0.318 0.975 1.162 0.571 
mtwara -0.469 0.254 -0.382 0.574 1.284 0.439 
ruvuma 0.241 0.098 0.961 1.557 1.050 1.898 
iringa 0.013 -0.120 0.250 0.795 0.876 1.235 
mbeya 0.587 -0.153 0.911 0.965 0.955 1.831 
tabora -0.211 0.570 -0.313 0.715 1.488 0.897 
rukwa -0.137 0.088 -0.124 0.786 1.437 0.816 
kigoma -0.024 0.054 -0.569 1.302 0.801 0.786 
shinyanga 0.087 -0.132 -0.227 1.062 0.873 0.967 
mwanza -0.466 0.708 -0.221 0.371 1.829 0.894 
manyara 0.387 0.018 0.366 1.387 1.090 1.478 
Zones       
Central Zone 0.055 0.414 -0.221 0.990 1.414 0.827 
Coastal Zone 0.033 0.364 0.819 1.042 1.331 1.659 
Lake Zone 0.088 -0.038 -0.068 1.088 0.962 0.973 
Northern Zone 0.334 -0.022 0.693 1.334 0.978 1.693 
S.Highlands Zone 0.096 -0.046 0.249 0.986 1.011 1.289 
all zones 0.067 0.086 0.183 1.018 1.086 1.216 



 

 
Table 8: Robustness: Factors associated with Productivity. 
 Log Productivity (Self-reported) Log Productivity (GPS measures) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Soil quality is good .4384*** .4392*** .4211*** .4372*** .4373*** .4380*** .4199*** .4361*** 
 (.1140) (.1242) (.1170) (.1155) (.1142) (.1242) (.1171) (.1156) 
Soil quality is average .2053* .1992* .1907* .1908* .2039* .1976* .1891 .1892* 
 (.1049) (.1156) (.1141) (.1125) (.1054) (.1161) (.1146) (.1130) 
Having erosion problem .0398 .0522 .0405 .0646 .0405 .0529 .0411 .0650 
 (.0856) (.0755) (.0772) (.0710) (.0855) (.0753) (.0770) (.0708) 
Being steep -.1342 -.2228 -.2664* -.1281 -.1335 -.2219 -.2658* -.1277 
 (.1884) (.1717) (.1527) (.1573) (.1883) (.1715) (.1528) (.1573) 
Distance from plot to home (Km) .0041 .0023 -.0005 .0010 .0042 .0024 -.0004 .0011 
 (.0076) (.0078) (.0077) (.0080) (.0076) (.0078) (.0077) (.0080) 
Distance from plot to the road (Km) -.0016 .0015 .0043 .0078 -.0019 .0012 .0040 .0076 
 (.0089) (.0098) (.0096) (.0091) (.0089) (.0098) (.0095) (.0091) 
Distance from plot to the market (Km) .0056** .0041 .0029 .0019 .0056** .0041 .0029 .0019 
 (.0027) (.0028) (.0026) (.0028) (.0027) (.0028) (.0026) (.0028) 
Solely owned by the household -.2542*** -.1881** -.1878** -.1700** -.2544*** -.1884** -.1880** -.1702** 
 (.0872) (.0903) (.0877) (.0835) (.0870) (.0902) (.0875) (.0833) 
Plot has a title -.0106 -.0206 -.0780 -.0624 -.0141 -.0244 -.0818 -.0661 
 (.1258) (.1229) (.1235) (.1268) (.1252) (.1224) (.1231) (.1263) 
Use of Organic Fertilizer on the plot .0728 .0776 .0102 .0316 .0698 .0744 .0072 .0284 
 (.0945) (.0928) (.0908) (.0943) (.0941) (.0925) (.0903) (.0938) 
Use of Inorganic Fertilizer on the plot .4052*** .3992*** .3727*** .3701*** .4040*** .3979*** .3711*** .3681*** 
 (.0937) (.1000) (.1063) (.0995) (.0932) (.0995) (.1061) (.0993) 
Use of Pesticides on the plot -.0523 -.0368 -.0718 -.0876 -.0575 -.0421 -.0768 -.0930 
 (.1254) (.1153) (.1136) (.1243) (.1242) (.1142) (.1129) (.1235) 



 

 Log Productivity (Self-reported) Log Productivity (GPS measures) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Improved seeds .2088*** .1820*** .1288* .1263* .2100*** .1832*** .1301* .1277* 
 (.0617) (.0623) (.0701) (.0688) (.0617) (.0623) (.0701) (.0688) 
Multiple managers on the plot  .0892 .0042 .0335  .0916 .0068 .0364 
  (.1802) (.1695) (.1695)  (.1802) (.1696) (.1694) 
Main manager is a female  .0428 .0521 .0555  .0434 .0526 .0559 
  (.0876) (.0802) (.0811)  (.0875) (.0802) (.0810) 
Age of the main plot manager  -.0210 -.0267 -.0266*  -.0209 -.0266 -.0265* 
  (.0144) (.0161) (.0151)  (.0144) (.0161) (.0151) 
Age of the main manager (squared)  .0001 .0001 .0001  .0001 .0001 .0001 
  (.0001) (.0002) (.0001)  (.0001) (.0002) (.0001) 
Individual years of schooling  .0052 -.0685 -.0718  .0053 -.0686 -.0719 
  (.0126) (.0504) (.0513)  (.0126) (.0501) (.0509) 
Number of manager  .0524 .1129 .0746  .0510 .1115 .0730 
  (.1522) (.1512) (.1433)  (.1522) (.1511) (.1432) 
Household size   -.0175 -.0163   -.0175 -.0162 
   (.0108) (.0115)   (.0108) (.0115) 
Household head school years   .0675 .0731   .0677 .0734 
 
Having access to electricity 

  (.0508) 
.4484** 

(.0518) 
.4232** 

  (.0504) 
.4478** 

(.0515) 
.4223** 

   (.2167) (.2093)   (.2168) (.2094) 
Asset index (asset dummies)   .0655 .0745   .0659 .0750 
   (.1034) (.1030)   (.1036) (.1031) 
HH, Any shock (0/1)   -.0931 -.0665   -.0926 -.0658 
   (.0983) (.1007)   (.0984) (.1007) 
HH, asset losses (0/1)   .1199* .1278*   .1176 .1255* 
   (.0708) (.0720)   (.0708) (.0721) 



 

 Log Productivity (Self-reported) Log Productivity (GPS measures) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Number of plots   .0978 .0924   .0984* .0928 
   (.0590) (.0586)   (.0588) (.0584) 
Number of plots (squared)   -.0122** -.0105*   -.0122** -.0105* 
   (.0058) (.0057)   (.0058) (.0057) 
Agricultural extension index(Source   .0335 .0086   .0340 .0093 
based)   (.0807) (.0840)   (.0810) (.0843) 
Farm implements index (diversity)   .1542*** .1441***   .1534*** .1432*** 
   (.0321) (.0325)   (.0323) (.0327) 
Slope(gradient of steepness that mea-    -.0187    -.0185 
sured in degree)    (.0265)    (.0265) 
Length of the growing period in days    -.0056***    -.0057*** 
 
Demeaned average temperature 

   (.0016) 
-.0432* 

   (.0016) 
-.0438* 

    (.0230)    (.0230) 
Demeaned average rainfall    -.0028    -.0027 
    (.0025)    (.0025) 
Observations 1307 1304 1290 1287 1307 1304 1290 1287 
R2 .1112 .1442 .1869 .2038 .1112 .1442 .1867 .2037 
R2adj .0889 .1185 .1555 .1702 .0889 .1184 .1553 .1701 

Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 9: Decomposition of R-squared for productivity regression models: Self-reported (sr) vs GPS 
 
 
 

Input Shapley-sr Shapley-gps 
Plot Characteristics 25.706 25.732 
Manager Characteristics 19.167 19.174 
Household Characteristics 22.280 22.183 
Community Characteristics 12.759 12.814 
Zones-Year fix-effects 20.088 20.096 
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Figures 
Figure 1: Example of a 3D Zonotope, source Hildenbrand (1981). This zonotope has been 
generated by 4 vectors a1, a2, a3, and a4 representing farms (or farms’ characteristics). The 
combination (Mikowski sum of the segment line) of two vectors yields a parallelogram, and all 
the vectors combined, give the zonotope. 

 
Source Hildenbrand (1981). 

  

Figure 1: Example of a 3D Zonotope 
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Figure 2:  A graphical 3D illustration of the geometric approach. For simplicity, we only plot one 
vector of plot characteristics (ai) and illustrates the measures obtained from the geometric 
analysis. dy is the diagonal of the zonotope from projecting all the vectors in the inputs-output 
space (La, Ld, Y). pr−3(dy) and pr−3(ai) represent respectively the projection of dy and ai in the 
inputs-space. The tangent of θ3(dy) is the productivity index of the whole sector made up of the 
farms  ai. 

 
Figure 3: Zonotopes of Pwani (left) and Kigoma (right) - rendering at the same scale.  The 
shape of the zonotopes provides graphically an idea of how heterogeneous is the maize sector in 
each of the regions. 

Figure 2: A graphical 3D illustration of the geometric approach. 

Figure 3: Zonotopes of Pwani (left) and Kigoma (right) 
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Source: https://ipad.fas.usda.gov/rssiws/al/eafrica_cropprod.aspx 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4: Map showing the spatial distribution of Maize crop in Tanzania in 2014/15. 
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Figure 5. Distribution of self-reported and GPS plot sizes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6: Comparing empirical densities of log productivity index (GPS- Measured and self-
reported) 
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Figure 8: Empirical Distribution of Labor Productivity in Maize Production by 
Agroecological per zone and round in Tanzania 

  
 
 
 
 

Figure 7. Empirical Distribution of Labor Productivity in Maize Production by 
Agroecological in Tanzania 
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Figure 9: Comparing the empirical densities of the Zonotope (log productivity) and the DEA 
(log efficiency) approaches per round 

 
 
 
Figure 10: Comparing the empirical densities of the Zonotope (log productivity) and the 
DEA (log efficiency) approaches per zone and round. 
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